We study spatial search with continuous-time quantum walks on real complex networks. We use smaller replicas of the Internet network obtained with a recent geometric renormalization method introduced by García-Pérez et al. (2018). This allows us to infer for the first time the behavior of a quantum spatial search algorithm on a real complex network. By simulating numerically the dynamics and optimizing the coupling parameter, we study the optimality of the algorithm and its scaling with the size of the network, showing that on average it is considerably better than the classical scaling