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4INFN - Sezione di Milano, I-20133 Milano, Italy

(Received 7 June 2020; accepted 19 October 2020; published 12 November 2020)

We show that continuous quantum nondemolition (QND) measurement of an atomic ensemble is able to
improve the precision of frequency estimation even in the presence of independent dephasing acting on
each atom. We numerically simulate the dynamics of an ensemble with up to N ¼ 150 atoms initially
prepared in a (classical) spin coherent state, and we show that, thanks to the spin squeezing dynamically
generated by the measurement, the information obtainable from the continuous photocurrent scales
superclassically with respect to the number of atoms N. We provide evidence that such superclassical
scaling holds for different values of dephasing and monitoring efficiency. We moreover calculate the extra
information obtainable via a final strong measurement on the conditional states generated during the
dynamics and show that the corresponding ultimate limit is nearly achieved via a projective measurement of
the spin-squeezed collective spin operator. We also briefly discuss the difference between our protocol and
standard estimation schemes, where the state preparation time is neglected.
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Quantum enhanced metrology [1,2] is one of the most
promising and well developed ideas in the realm of
quantum technologies, with application ranging from the
probing of delicate biological systems [3] to the squeezing
enhanced optical interferometry [4,5] recently exploited in
gravitational wave detectors [6,7]. Atom-based quantum
enhanced sensors [8,9] have also been intensively studied
and have myriad of potential applications [10], most
notably in magnetometry [11–15] and atomic clocks
[16–18].
Continuous measurements [19,20] have proven to be

very useful tools for the exquisite control of quantum
systems, a necessary requirement for the realization of
quantum technologies. The genuinely quantum regime of
observing single trajectories has been reached in different
platforms, such as superconducting circuits [21–23], opto-
mechanical [24,25], and hybrid [26] systems. Crucially,
continuously monitoring a quantum system allows for the
estimation of its characteristic parameters. Literature has
emerged discussing both practical estimation strategies
[27–37] and the fundamental statistical tools to assess
the achievable precision [38–45].
Being also particularly robust against noise [46], spin

squeezing [47,48] of atomic ensembles has been long
studied as a resource for quantum enhanced metrology.
Implementing a continuous quantum nondemolition
(QND) measurement of a collective spin observable is a
well-known approach to generate a conditional spin-
squeezed state and the prototypical realization of such

schemes relies on the collective interaction between light
and atoms [49–52]. Several measurement-based schemes
have been experimentally realized on large atomic ensem-
bles, witnessing spin squeezing of up to N ≈ 1011 atoms
[53–60].
In the ideal noiseless scenario, continuous QND mea-

surements allow one to overcome projection noise and to
achieve estimation with Heisenberg limited uncertainty,
i.e., inversely proportional to the number of atoms, just by
processing the continuous detected signal [29,45,61–64].
In conventional metrological schemes exploiting an initial
entangled state, Heisenberg scaling is lost in the presence of
most kinds of independent noises [65–68]. If the external
degrees of freedom causing the noise can be continuously
observed, however, its effect can be (at least partially)
counteracted and the usefulness of the initial entangled
state preserved [69–72]. The effect of independent noises
on continuous QND strategies, in which the entanglement
is created dynamically, has not been explored and it will be
the main focus of this work. In more detail, we have the
following goals: (i) verify if an enhancement is still
observed comparing to the situation where no continuous
monitoring is performed; (ii) verify if a quantum enhance-
ment due to nonclassical correlations such as spin squeez-
ing and entanglement can still be observed.
Quantum metrology via continuous QND monitoring in

the presence of dephasing.—We consider the following
scenario: an ensemble of N two-level atoms (qubits) is
rotating around the z axis with angular frequency ω; each
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atom is subjected to equal and independent Markovian
dephasing with rate κ, leading to the following Lindblad
master equation

dϱ
dt

¼ Lϱ≡ −iω½Jz; ϱ� þ
κ

2

XN

j¼1

D½σðjÞz �ϱ; ð1Þ

where Jz ¼
P

N
j¼1 σ

ðjÞ
z =2, D½A�ϱ ¼ AϱA† − ðA†Aϱþ

ϱA†AÞ=2. Our aim is the estimation of the frequency ω,
which in optical magnetometry corresponds to the Larmor
frequency ω ¼ γB (γ being the gyromagnetic ratio), thus
equivalent to the estimation of the intensity B of a
magnetic field.
For noisy quantum frequency estimation schemes, the

ultimate limit on the estimation uncertainty δω for an
experiment of total duration T, optimized over the duration
t of a single experiment repeated M ¼ T=t times, is given
by a quantum Cramér-Rao bound (CRB) of the form [65]

ðδω2ÞT ≥
1

maxt½Q=t� ; ð2Þ

where Q corresponds to the quantum Fisher information
(QFI) of the quantum state evolved up to time t (see
Supplemental Material [73] for more details on estimation
theory [74–78]).
If the initial state is prepared in a coherent spin state

(CSS), i.e., the tensor products of eigenstates of the single
atom Pauli matrices σðjÞx , jψCSSi ¼⊗N

j¼1 ðj0ij þ j1ijÞ=
ffiffiffi
2

p
,

the state remains separable at all times. The QFI of the CSS
state, optimized over the monitoring time t, follows the
standard quantum limit (SQL), i.e., it is linear in N
(corresponding to δω ∼ 1=

ffiffiffiffi
N

p
for the uncertainty) and

reads

Q⋆
CSS ≡max

t
½QCSS=t� ¼

N
2eκ

: ð3Þ

By allowing initial entangled states, such as a GHZ state
jψGHZi ¼ ð⊗N

j¼1 j0ijþ ⊗N
j¼1 j1ijÞ=

ffiffiffi
2

p
, one can achieve a

Heisenberg scaling of the QFI, i.e.,Q ∼ N2 in the noiseless
scenario (κ ¼ 0).
This quantum enhancement is, however, lost as soon as

some nonzero dephasing acts on the system [65–68].
Dephasing is the most detrimental among independent
noise channels: remarkably enough, the change of scaling
is observed not only asymptotically, but also at finite N
[65], and most of the approaches suggested in the literature
to circumvent the no-go theorems for noisy quantum
metrology are useful only in the presence of noise trans-
verse to the Hamiltonian [98–102] or for time-correlated
dephasing [103,104].
We now assume to prepare the atoms in a CSS state

jψCSSi at time t ¼ 0, and to perform a continuous moni-
toring of the collective spin operator Jy ¼

P
N
j¼1 σ

ðjÞ
y =2,

such that the conditional dynamics of the atom ensemble is
described by the stochastic master equation (SME)

dϱc ¼ Lϱcdtþ ΓD½Jy�ϱcdtþ
ffiffiffiffiffiffi
ηΓ

p
H½Jy�ϱcdw; ð4Þ

conditioned by the measured photocurrent

dyt ¼ 2
ffiffiffiffiffiffi
ηΓ

p
Tr½ϱcJy�dtþ dw: ð5Þ

The parameter Γ corresponds to the collective measurement
strength, η to the measurement efficiency, dw to a Wiener
increment (s.t. dw2 ¼ dt) and we have introduced the
superoperator H½A�ϱ ¼ Aϱþ ϱA† − Tr½ϱðAþ A†Þ�ϱ. This
conditional dynamics can be obtained, for instance, by
considering the setup depicted in Fig. 1: a laser is
collectively coupled to the total spin of the atoms (possibly
inside a cavity) and the outcoming light is continuously
measured after the interaction [51,61,62,90,105] (more
details on these physical implementations are given in
the Supplemental Material [73]).
When one considers these estimation strategies based on

continuous measurements, with a dynamics obeying a SME
such as Eq. (4), the parameter can be inferred from two
sources of information: the continuous photocurrent dyt
and a final strong measurement on the conditional state ϱc.
In this case the QFIQ in Eq. (2) is replaced by the so-called
effective QFI [45],

Q̃eff ¼ F yt þ
X

traj

ptrajQ½ϱðtrajÞc �; ð6Þ

that is the classical Fisher information (FI) F yt that
quantifies the information obtainable from the continuous
photocurrent dyt, plus the average of the QFI of the
conditional states ϱðtrajÞc corresponding to the different
trajectories (more details in the Supplemental Material
[73]). Furthermore, one can also consider the situation
where the parameter is inferred from the continuous
photocurrent dyt only; in this scenario the appropriate
bound is obtained by replacing Q with F yt .
In the limit of a large number of atoms N ≫ 1 and with

no noise (κ ¼ 0), it has been already demonstrated that,
thanks to this measurement strategy, one can estimate the

FIG. 1. Quantum magnetometry via continuous measurements:
An atomic ensemble of N atoms is sensing a magnetic field that
causes precession of the spin around the z axis, and is subjected to
independent dephasing on each atom with strength κ. A far-
detuned laser shines the atoms, collectively coupling to the total
spin Jy with a strength Γ, and it is then measured continuously
with efficiency η.
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frequency ω with a Heisenberg-like scaling, despite the
initial state being uncorrelated. The collective monitoring
dynamically generates spin squeezing in the conditional
states (and thus entanglement between the atoms), allowing
one to observe an N2 scaling both for the effective QFI and
the classical FI [45].
Furthermore, in this work we consider a much more

practical strategy than the one described in Refs. [71,72].
There, we have shown that the advantage of an initial
entangled state can be recovered by monitoring the N
independent environments responsible for the dephasing
(typically inaccessible, in practice). Here, not only we
consider a classical (separable) initial state, but we perform
continuous monitoring on an ancillary quantum system
over which we can assume to have full control; this may
correspond, for instance, to an optical field, as depicted
in Fig. 1.
Results.—The SME (4) is invariant under permutation of

the different atoms. This symmetry can be exploited to
dramatically reduce the dimension of the density operator
ϱc as described in Refs. [93,106]. By exploiting some
dedicated functions of QuTiP [94,107] introduced in
Ref. [93], we have developed a code in Julia (available
in Ref. [92]) that has allowed us to simulate quantum
trajectories solving the SME (4) and to calculate the figures
of merit introduced above up to N ¼ 150 atoms (see
Supplemental Material [73] for details on the numerics).
Before moving to the noisy case, we mention that we

have been able to verify that for κ ¼ 0 the estimation
precision follows a Heisenberg scaling, not only in the limit
N ≫ 1, but also for nonasymptotic values of N: our
numerics show that both the classical FI F yt and the
average QFI Q̄c ¼

P
traj ptrajQ½ϱðtrajÞc � (and thus their sum

Q̃eff) are quadratic in N (see Supplemental Material [73]).
We now focus on the effect of independent dephasing on

this measurement strategy. In the upper panels of Fig. 2 we
plot different figures of merit characterizing our strategy for
N ¼ 50 and N ¼ 100, comparing them with the results
obtained with CSS without monitoring. We observe that the
effective QFI Q̃eff=t is larger than the CSS QFI QCSS=t at
all times. Remarkably, we observe that for N ¼ 100 also
the maximum of the monitoring FI maxt½F yt=t� surpasses
the maximum for the standard strategy maxt½QCSS=t�. In
general, this behavior is confirmed for different values of κ.
This clearly shows that, by increasing N, the information
obtained from the photocurrent dyt is enough to achieve a
higher precision than via coherent spin states without
monitoring.
We also find that Q̄c=t is larger than QCSS=t at

certain times. This result can be explained by studying
the spin-squeezing witness [48,51,108] ζy½ϱ� ¼ ½ðhJzi2þ
hJxi2Þ=NΔJ2y�, where hAi¼Tr½ϱA� and ΔJ2y¼hJ2yi−hJyi2.
If ζy½ϱ� > 1, the state ϱ is spin squeezed along the y
direction. In the bottom panels of Fig. 2 we plot the average
spin squeezing ζ̄y ¼

P
traj ptrajζy½ϱðtrajÞc � and indeed we

observe the maximum violation approximately at the same
time t for which Q̄c=t > QCSS=t (for more details about
the distribution of trajectory dependent quantities, as
ζy½ϱðtrajÞc � and Q½ϱðtrajÞc �, see Supplemental Material [73]).
The generation of spin-squeezed conditional states leads us
to investigate the effectiveness of a strong measurement of
the operator Jy, optimal in the noiseless case [45]. We
evaluate the corresponding classical Fisher information,
and we average it over the different trajectories, yielding
F̄ c½Jy�. As shown in Fig. 2, F̄ c½Jy� is approximately equal
to Q̄c for evolution times near to the maximum of both Q̄c
and Q̃eff. In general, our numerics show that a strong
measurement of Jy is nearly optimal in the parameter
regime relevant for our protocol.
Importantly, the behavior of the spin-squeezing witness

ζ̄y helps us also to better understand the optimal monitoring
times for the different figures of merit plotted in Fig. 2. The
following relationship holds:

topt½Q̄c� < topt½Q̃eff� < topt½F yt �: ð7Þ

In order to maximize the average QFI Q̄c=t, as we
discussed above, one therefore needs to stop the monitoring
at a time topt½Q̄c� corresponding approximately to the
maximum spin squeezing. On the other hand, since F yt
quantifies the information contained in the photocurrent yt

FIG. 2. Top: Information rate Q=t for noisy frequency estima-
tion as a function of time in terms of different figures of merit.
Blue line: effective QFI Q̃eff=t; orange line: continuous monitor-
ing classical FI F yt=t; green line: conditional states average QFI
Q̄c; jade green dashed line: conditional states average FI for a Jy
measurement F̄ c½Jy�; black dashed line: QFI for a CSS QCSS=t.
Bottom: average spin squeezing ζ̄y as a function of time Γt. Left
panels: N ¼ 50; right panels: N ¼ 100. The dashed vertical gold
line corresponds to the monitoring time where the average spin
squeezing violation is maximum. Parameters: κ=Γ ¼ 1,
ω=Γ ¼ 10−2, η ¼ 1, number of trajectories: ntraj ¼ 15000. The
shaded areas represent the 95% confidence interval (see Supple-
mental Material [73]).
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accumulated during the whole monitoring time, one can
fully exploit the generated spin squeezing and the encoding
of the parameter by waiting longer, i.e., topt½F yt � > topt½Q̄c�.
Consequently, since the effective QFI Q̃eff is the sum ofF yt
and Q̄c, the corresponding optimal time has to satisfy the
relation in Eq. (7).
Figure 3 shows the ratio between the optimized effective

QFI Q̃⋆
eff ≡maxt½Q̃eff=t� and the CSS bound Q�

CSS as a
function of N and for different values of the dephasing rate
κ. It is clear from the plot and from the inset, where the two
quantities are plotted in logarithmic scale, that not only the
CSS bound is always surpassed, but also the effective QFI
shows a superlinear behavior. An important role in this
result is played by the photocurrent FI F yt , which corre-
sponds to the most practical strategy of estimating ω
without any strong final measurement. As it is apparent
from Fig. 4, the behavior of F ⋆

yt ≡maxt½F yt=t� is very
peculiar: a κ-independent superclassical scaling F ⋆

yt ∼ N4=3

seems to hold for all the considered values of the dephasing
strength κ (notice that by increasing κ the scaling N4=3 is
obtained and then maintained for large enough N). It is also
important to mention that a reduced measurement effi-
ciency (e.g., η ¼ 0.5 in one of the curves in Fig. 4) yields
the same qualitative results as having a larger dephasing:
(i) the CSS QFI is surpassed as long as N is large enough;
(ii) despite nonunit efficiency, the κ-independent scaling
N4=3 is still observed for F yt, but for larger N and with a
reduced proportionality constant (more plots for η < 1 are
found in the Supplemental Material [73]).
Finally, we consider the performance of our strategy in

the presence of collective Markovian dephasing, that is, a
dynamics described by a master equation as in Eq. (1), but
with the last term replaced by κcollD½Jz�ϱ. Also in this case
our scheme based on continuous QND monitoring

performs better than a standard strategy with CSS states
and no monitoring. However, we observe that spin squeez-
ing is hardly generated and that no enhancement in the
estimation precision due to quantum correlations can be
observed (see more details in the Supplemental Material
[73]). It is crucial to remark that collective dephasing is
best tackled with specific estimation protocols, exploit-
ing decoherence-free subspaces, that are able to restore
Heisenberg scaling [79]. We therefore leave to future
investigations the possibility of combining these strategies
with our approach, to jointly counteract both independent
and collective dephasing.
Discussion.—We showed that continuous QND moni-

toring leads to an enhancement in the estimation precision,
even in the presence of Markovian dephasing, known to be
the most detrimental noise for quantum metrology.
One last remark regarding the precision our protocol can

ultimately achieve is in order. A fundamental bound that
covers strategies with ancillary systems and full and fast
control [100,101] shows that only an improvement
of a factor e on Q⋆

CSS in Eq. (3) can be obtained, i.e.,
Bent ¼ N=ð2κÞ. This bound is attained asymptotically for
N ≫ 1 by preparing a spin squeezed initial state, without
ancillas and control operations [46]. At present it is not
clear if the effective QFI for our scheme should also obey
this bound. Continuous monitoring can be described as
qubits interacting with the system and being sequentially
measured [109–111]. However, it is unclear if the assump-
tions beyond the derivation in Refs. [100,101] are satisfied
in the limit of infinitesimal time steps with simultaneous
encoding, noise, and interaction with the ancillas. Despite
the high optimization level of our code, we could not
investigate regimes where our strategy would be able to
reach values near to Bent. We thus leave as an open question
if our protocol, thanks in particular to the observed scaling

FIG. 3. Ratio between the optimized effective QFI Q̃⋆
eff and the

optimized Q⋆
CSS (dashed lines) as a function of N for different

values of the dephasing rate κ, with ω=Γ ¼ 10−2 and ntraj ¼
10000 trajectories. See the Supplemental Material [73] for details
on the statistical error. In the inset, log-log plot of Q̃⋆

eff (markers)
and QCSS (dashed lines) as a function of N for the same values
of κ.

FIG. 4. Continuous monitoring FI maxt½F yt=t� (markers) as a
function of N for different values of the dephasing rate, with
ω=Γ ¼ 10−2 and number of trajectories ntraj ¼ 10000. Dashed
lines showing superlinear functions scaling as N4=3 have been
plotted as a guide to the eye.
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of the classical FI F �
yt , may be able to attain (or possibly

surpass) this bound in experimentally relevant regimes
(state of the art experiments with atomic clouds involve
105–1011 atoms [58–60]).
Finally, we highlight again one of the main features of

our protocol: the monitoring-induced dynamics generates
the resourceful state simultaneously with the frequency
encoding. In fact, in the standard analysis of quantum
estimation strategies the state preparation time is typically
neglected. A fair comparison between “classical” and
“quantum enhanced” strategies accounting also the pre-
paration time as a resource is discussed, for the noiseless
scenario, in Refs. [112–114]. In Refs. [113,114],
in particular, the generation of spin squeezing via one
-axis and two-axis twisting is considered and it is shown
that the best strategy is to allow the encoding and the spin-
squeezing Hamiltonians to act simultaneously. Remarkably
enough, this enhancement is comparable to the one we
observe in our protocol, with no need of time-dependent
control Hamiltonians.
The role of preparation time in noisy metrology with

Markovian independent dephasing has been discussed in
Ref. [112]. There, however, only initial GHZ states have
been considered and, unsurprisingly, they offer no improve-
ment over CSS states; the same is true when the preparation
time is not taken into account [65]. Optimal entangled
states for standard frequency estimation in the presence of
dephasing have been numerically obtained in Ref. [115].
We observe that, remarkably, our protocol can achieve an
enhancement of the same order of magnitude [cf. Fig. 3 and
Fig. 3(b) of Ref. [115] ]. We therefore expect that, if the
preparation time is counted as a resource, our protocol
should be able to outperform the one involving the
preparation of those optimal states.
Concluding, our results pave the way to further theo-

retical and experimental investigations into noisy quantum
metrology via QND continuous monitoring, as a practical
and relevant tool to obtain a quantum enhancement in spite
of decoherence.
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